HERAMB COACHING CLASSES

Yogeshwar Towers, Katemanivali, Kalyan (East)

Date: 20/09/18

XII/Mathematics

Marks: 30

Duration:1 Hour

ATTEMPT ANY SIX

Q.1. Find $\frac{dy}{dx}$ for the following.

1)
$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

2)
$$y = tan^{-1} \left(\frac{6x}{1 - 5x^2} \right)$$

Q.2. Differentiate the following functions in their respective domains with respect to \boldsymbol{x}

1)
$$y = \frac{(2x-3)^{1/4}}{(3x+1)^{1/3}(2-x)^{7/2}}$$

$$2) y = (\sin x)^x + x \cdot \sin x$$

Q.3. If
$$x^y = e^{x-y}$$
 then show that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$

Q.4. If
$$x^{7}y^{9} = (x + y)^{16}$$
, then show that $\frac{dy}{dx} = \frac{y}{x}$

Q.5. Differentiate e^{4x+5} with respect to e^{3x}

Q.6. If
$$x = e^{\sin t}$$
, $y = e^{\cos t}$, then show that $\frac{dy}{dx} = -\frac{y}{x} \cdot \frac{\log x}{\log y}$

Q.7. If
$$x = \frac{4t}{1+t^2}$$
 and $y = 3(\frac{1-t^2}{1+t^2})$, then show that $\frac{dy}{dx} = -\frac{9}{4} \cdot \frac{x}{y}$